Distortions of political bias in crowdsourced misinformation flagging

Author:

Coscia Michele1ORCID,Rossi Luca1ORCID

Affiliation:

1. IT University of Copenhagen, Kobenhavn, Denmark

Abstract

Many people view news on social media, yet the production of news items online has come under fire because of the common spreading of misinformation. Social media platforms police their content in various ways. Primarily they rely on crowdsourced ‘flags’: users signal to the platform that a specific news item might be misleading and, if they raise enough of them, the item will be fact-checked. However, real-world data show that the most flagged news sources are also the most popular and—supposedly—reliable ones. In this paper, we show that this phenomenon can be explained by the unreasonable assumptions that current content policing strategies make about how the online social media environment is shaped. The most realistic assumption is that confirmation bias will prevent a user from flagging a news item if they share the same political bias as the news source producing it. We show, via agent-based simulations, that a model reproducing our current understanding of the social media environment will necessarily result in the most neutral and accurate sources receiving most flags.

Publisher

The Royal Society

Subject

Biomedical Engineering,Biochemistry,Biomaterials,Bioengineering,Biophysics,Biotechnology

Cited by 12 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Discerning Individual Preferences for Identifying and Flagging Misinformation on Social Media;Proceedings of the 32nd ACM Conference on User Modeling, Adaptation and Personalization;2024-06-22

2. Voices in the digital storm: Unraveling online polarization with ChatGPT;Technology in Society;2024-06

3. Social Media and Me: How Community Identity Influences Click Speech;Journal of Computer Information Systems;2024-05-09

4. Fake news inside ideological social media echo chambers;Handbook of Social Media in Education Consumer Behavior and Politics;2024

5. Crowds Can Effectively Identify Misinformation at Scale;Perspectives on Psychological Science;2023-08-18

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3