Optimization of periodic treatment strategies for bacterial biofilms using an agent-based in silico approach

Author:

Blee Johanna A.12ORCID,Gorochowski Thomas E.23ORCID,Hauert Sabine13

Affiliation:

1. School of Engineering Mathematics and Technology, University of Bristol, Ada Lovelace Building, Tankard's Close, Bristol BS8 1TW, UK

2. School of Biological Sciences, University of Bristol, Life Sciences Building, 24 Tyndall Avenue, Bristol BS8 1TQ, UK

3. BrisEngBio, School of Chemistry, University of Bristol, Cantock's Close, Bristol BS8 1TS, UK

Abstract

Biofilms are responsible for most chronic infections and are highly resistant to antibiotic treatments. Previous studies have demonstrated that periodic dosing of antibiotics can help sensitize persistent subpopulations and reduce the overall dosage required for treatment. Because the dynamics and mechanisms of biofilm growth and the formation of persister cells are diverse and are affected by environmental conditions, it remains a challenge to design optimal periodic dosing regimens. Here, we develop a computational agent-based model to streamline this process and determine key parameters for effective treatment. We used our model to test a broad range of persistence switching dynamics and found that if periodic antibiotic dosing was tuned to biofilm dynamics, the dose required for effective treatment could be reduced by nearly 77%. The biofilm architecture and its response to antibiotics were found to depend on the dynamics of persister cells. Despite some differences in the response of biofilm governed by different persister switching rates, we found that a general optimized periodic treatment was still effective in significantly reducing the required antibiotic dose. As persistence becomes better quantified and understood, our model has the potential to act as a foundation for more effective strategies to target bacterial infections.

Funder

Royal Society

The Alan Turing Institute

UKRI-funded Engineering Biology Research Centre

EPSRC

Publisher

The Royal Society

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3