Statistical analysis reveals the onset of synchrony in sparse swarms of Photinus knulli fireflies

Author:

Sarfati Raphaël1ORCID,Gaudette Laura2ORCID,Cicero Joseph M.3ORCID,Peleg Orit14567ORCID

Affiliation:

1. BioFrontiers Institute, University of Colorado, Boulder, CO, USA

2. McGuire Center for Lepidoptera and Biodiversity, Florida Museum of Natural History, Gainesville, FL, USA

3. No affiliation

4. Department of Computer Science, University of Colorado, Boulder, CO, USA

5. Department of Ecology and Evolutionary Biology, University of Colorado, Boulder, CO, USA

6. Department of Physics, University of Colorado, Boulder, CO, USA

7. Department of Applied Math, University of Colorado, Boulder, CO, USA

Abstract

Flash synchrony within firefly swarms is an elegant but elusive manifestation of collective animal behaviour. It has been observed, and sometimes demonstrated, in a few populations across the world, but exactly which species are capable of large-scale synchronization remains unclear, especially for low-density swarms. The underlying question which we address here is: how does one qualify a collective flashing display as synchronous, given that the only information available is the time and location of flashes? We propose different statistical approaches and apply them to high-resolution stereoscopic video recordings of the collective flashing of Photinus knulli fireflies, hence establishing the occurrence of synchrony in this species. These results substantiate detailed visual observations published in the early 1980s and made at the same experimental site: Peña Blanca Canyon, Coronado National Forest, AZ, USA. We also remark that P. knulli ’s collective flashing patterns mirror those observed in Photinus carolinus fireflies in the Eastern USA, consisting of synchronous flashes in periodic bursts with rapid accretion and quick decay.

Funder

National Geographic Society

Publisher

The Royal Society

Subject

Biomedical Engineering,Biochemistry,Biomaterials,Bioengineering,Biophysics,Biotechnology

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3