Constrained optimization of divisional load in hierarchically organized tissues during homeostasis

Author:

Ashcroft Peter1ORCID,Bonhoeffer Sebastian1ORCID

Affiliation:

1. Institute of Integrative Biology, ETH Zurich, Zurich, Switzerland

Abstract

It has been hypothesized that the structure of tissues and the hierarchy of differentiation from stem cell to terminally differentiated cell play a significant role in reducing the incidence of cancer in that tissue. One specific mechanism by which this risk can be reduced is by minimizing the number of divisions—and hence the mutational risk—that cells accumulate as they divide to maintain tissue homeostasis. Here, we investigate a mathematical model of cell division in a hierarchical tissue, calculating and minimizing the divisional load while constraining parameters such that homeostasis is maintained. We show that the minimal divisional load is achieved by binary division trees with progenitor cells incapable of self-renewal. Contrary to the protection hypothesis, we find that an increased stem cell turnover can lead to lower divisional load. Furthermore, we find that the optimal tissue structure depends on the time horizon of the duration of homeostasis, with faster stem cell division favoured in short-lived organisms and more progenitor compartments favoured in longer-lived organisms.

Funder

Schweizerischer Nationalfonds zur Förderung der Wissenschaftlichen Forschung

Publisher

The Royal Society

Subject

Biomedical Engineering,Biochemistry,Biomaterials,Bioengineering,Biophysics,Biotechnology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3