Assessing model mismatch and model selection in a Bayesian uncertainty quantification analysis of a fluid-dynamics model of pulmonary blood circulation

Author:

Paun L. Mihaela1ORCID,Colebank Mitchel J.2ORCID,Olufsen Mette S.2ORCID,Hill Nicholas A.1,Husmeier Dirk1ORCID

Affiliation:

1. School of Mathematics and Statistics, University of Glasgow, Glasgow, G12 8QQ, UK

2. Department of Mathematics, North Carolina State University, Raleigh, NC 27695, USA

Abstract

This study uses Bayesian inference to quantify the uncertainty of model parameters and haemodynamic predictions in a one-dimensional pulmonary circulation model based on an integration of mouse haemodynamic and micro-computed tomography imaging data. We emphasize an often neglected, though important source of uncertainty: in the mathematical model form due to the discrepancy between the model and the reality, and in the measurements due to the wrong noise model (jointly called ‘model mismatch’). We demonstrate that minimizing the mean squared error between the measured and the predicted data (the conventional method) in the presence of model mismatch leads to biased and overly confident parameter estimates and haemodynamic predictions. We show that our proposed method allowing for model mismatch, which we represent with Gaussian processes, corrects the bias. Additionally, we compare a linear and a nonlinear wall model, as well as models with different vessel stiffness relations. We use formal model selection analysis based on the Watanabe Akaike information criterion to select the model that best predicts the pulmonary haemodynamics. Results show that the nonlinear pressure–area relationship with stiffness dependent on the unstressed radius predicts best the data measured in a control mouse.

Funder

National Science Foundation

Engineering and Physical Sciences Research Council

American Heart Association

Royal Society of Edinburgh

Publisher

The Royal Society

Subject

Biomedical Engineering,Biochemistry,Biomaterials,Bioengineering,Biophysics,Biotechnology

Cited by 22 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3