The biomechanics of tooth strength: testing the utility of simple models for predicting fracture in geometrically complex teeth

Author:

Sender Rachel S.1ORCID,Strait David S.12ORCID

Affiliation:

1. Department of Anthropology, Washington University in St Louis, St Louis, MO 63013, USA

2. Paleo-Research Institute, University of Johannesburg, Auckland Park, Gauteng 2092, South Africa

Abstract

Teeth must fracture foods while avoiding being fractured themselves. This study evaluated dome biomechanical models used to describe tooth strength. Finite-element analysis (FEA) tested whether the predictions of the dome models applied to the complex geometry of an actual tooth. A finite-element model was built from microCT scans of a human M 3 . The FEA included three loading regimes simulating contact between (i) a hard object and a single cusp tip, (ii) a hard object and all major cusp tips and (iii) a soft object and the entire occlusal basin. Our results corroborate the dome models with respect to the distribution and orientation of tensile stresses, but document heterogeneity of stress orientation across the lateral enamel. This implies that high stresses might not cause fractures to fully propagate between cusp tip and cervix under certain loading conditions. The crown is most at risk of failing during hard object biting on a single cusp. Geometrically simple biomechanical models are valuable tools for understanding tooth function but do not fully capture aspects of biomechanical performance in actual teeth whose complex geometries may reflect adaptations for strength.

Funder

National Science Foundation

Publisher

The Royal Society

Subject

Biomedical Engineering,Biochemistry,Biomaterials,Bioengineering,Biophysics,Biotechnology

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3