Mechanics and optimization of undulatory locomotion in different environments, tuning geometry, stiffness, damping and frictional anisotropy

Author:

Yaqoob Basit12ORCID,Rodella Andrea3ORCID,Del Dottore Emanuela2ORCID,Mondini Alessio2ORCID,Mazzolai Barbara2ORCID,Pugno Nicola M.14ORCID

Affiliation:

1. Laboratory for Bioinspired, Bionic, Nano, Meta Materials and Mechanics, Department of Civil, Environmental and Mechanical Engineering, University of Trento, 38122 Trento, Italy

2. Laboratory of Bioinspired Soft Robotics, Center for Convergent Technologies, Istituto Italiano di Tecnologia, 16163 Genova, Italy

3. Department of Structural and Geotechnical Engineering, Sapienza University of Rome, Italy

4. School of Engineering and Materials Science, Queen Mary University of London, London E1 4NS, UK

Abstract

One of the oldest yet most common modalities of locomotion known among limbless animals is undulatory, also recognized for its stability compared to legged locomotion. Multiple forms of active mechanisms, e.g. active gait control, and passive mechanisms, e.g. body morphology and material properties, have adapted to different environments. The current research explores the passive role of body stiffness and internal losses in meeting terrain requirements. Furthermore, it addresses the influence of the environment on the resultant gait and how the interplay between various environments and body properties can lead to different speeds. We modelled undulatory locomotion in a dry friction environment where frictional anisotropy determines propulsion. We found that the body stiffness, the moment of inertia, the dry frictional coefficient ratio between normal and tangential frictional constants, and the internal damping of the body play an essential role in optimizing speed and animal adaptability to external conditions. Furthermore, we demonstrate that various known gaits like swimming, crawling and polychaete-like locomotion are achieved as a result of the interaction between body and environment parameters. Moreover, we validated the model by retrieving a corn snake's speed using data from the literature. This study demonstrates that the dependence between morphology, body material properties and environment can be exploited to design long-segmented robots to perform in specialized situations.

Publisher

The Royal Society

Subject

Biomedical Engineering,Biochemistry,Biomaterials,Bioengineering,Biophysics,Biotechnology

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3