Differences in airborne stability of SARS-CoV-2 variants of concern is impacted by alkalinity of surrogates of respiratory aerosol

Author:

Haddrell Allen1ORCID,Otero-Fernandez Mara1,Oswin Henry1,Cogan Tristan2,Bazire James3,Tian Jianghan1,Alexander Robert3,Mann Jamie F. S.2,Hill Darryl3,Finn Adam34,Davidson Andrew D.3,Reid Jonathan P.1ORCID

Affiliation:

1. School of Chemistry, Cantock's Close, University of Bristol, Bristol, UK

2. Bristol Veterinary School, University of Bristol, Langford House, Langford, Bristol, UK

3. School of Cellular and Molecular Medicine, University of Bristol, Bristol, UK

4. School of Population Health Sciences, University of Bristol, Bristol, UK

Abstract

The mechanistic factors hypothesized to be key drivers for the loss of infectivity of viruses in the aerosol phase often remain speculative. Using a next-generation bioaerosol technology, we report measurements of the aero-stability of several SARS-CoV-2 variants of concern in aerosol droplets of well-defined size and composition at high (90%) and low (40%) relative humidity (RH) upwards of 40 min. When compared with the ancestral virus, the infectivity of the Delta variant displayed different decay profiles. At low RH, a loss of viral infectivity of approximately 55% was observed over the initial 5 s for both variants. Regardless of RH and variant, greater than 95% of the viral infectivity was lost after 40 min of being aerosolized. Aero-stability of the variants correlate with their sensitivities to alkaline pH. Removal of all acidic vapours dramatically increased the rate of infectivity decay, with 90% loss after 2 min, while the addition of nitric acid vapour improved aero-stability. Similar aero-stability in droplets of artificial saliva and growth medium was observed. A model to predict loss of viral infectivity is proposed: at high RH, the high pH of exhaled aerosol drives viral infectivity loss; at low RH, high salt content limits the loss of viral infectivity.

Funder

Engineering and Physical Sciences Research Council

Defence Science and Technology Laboratory

Medical Research Council

EPSRC Centre for Doctoral Training

University of Bristol

Medical Research Council/UKRI

Biotechnology and Biological Sciences Research Council

Health and Safety Executive

Elizabeth Blackwell Institute for Health Research

National Institute for Health and Care Research

Publisher

The Royal Society

Subject

Biomedical Engineering,Biochemistry,Biomaterials,Bioengineering,Biophysics,Biotechnology

Cited by 14 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3