A unifying theory for two-dimensional spatial redistribution kernels with applications in population spread modelling

Author:

Koch Dean C.1ORCID,Lewis Mark A.2,Lele Subhash R.3

Affiliation:

1. Department of Mathematical and Statistical Sciences at the University of Alberta (UofA), Edmonton, Canada T6G 2R3

2. Mathematical and Statistical Sciences and Biological Sciences at UofA, University of Alberta (UofA), Edmonton, Canada T6G 2R3

3. Mathematical and Statistical Sciences at UofA, University of Alberta (UofA), Edmonton, Canada T6G 2R3

Abstract

When building models to explain the dispersal patterns of organisms, ecologists often use an isotropic redistribution kernel to represent the distribution of movement distances based on phenomenological observations or biological considerations of the underlying physical movement mechanism. The Gaussian, two-dimensional (2D) Laplace and Bessel kernels are common choices for 2D space. All three are special (or limiting) cases of a kernel family, the Whittle–Matérn–Yasuda (WMY), first derived by Yasuda from an assumption of 2D Fickian diffusion with gamma-distributed settling times. We provide a novel derivation of this kernel family, using the simpler assumption of constant settling hazard, by means of a non-Fickian 2D diffusion equation representing movements through heterogeneous 2D media having a fractal structure. Our derivation reveals connections among a number of established redistribution kernels, unifying them under a single, flexible modelling framework. We demonstrate improvements in predictive performance in an established model for the spread of the mountain pine beetle upon replacing the Gaussian kernel by the Whittle–Matérn–Yasuda, and report similar results for a novel approximation, the product-Whittle–Matérn–Yasuda, that substantially speeds computations in applications to large datasets.

Funder

Natural Sciences and Engineering Research Council of Canada

Publisher

The Royal Society

Subject

Biomedical Engineering,Biochemistry,Biomaterials,Bioengineering,Biophysics,Biotechnology

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3