State-space aerodynamic model reveals high force control authority and predictability in flapping flight

Author:

Bayiz Yagiz E.1ORCID,Cheng Bo1ORCID

Affiliation:

1. Mechanical Engineering Department, The Pennsylvania State University, University Park, PA 16801, USA

Abstract

Flying animals resort to fast, large-degree-of-freedom motion of flapping wings, a key feature that distinguishes them from rotary or fixed-winged robotic fliers with limited motion of aerodynamic surfaces. However, flapping-wing aerodynamics are characterized by highly unsteady and three-dimensional flows difficult to model or control, and accurate aerodynamic force predictions often rely on expensive computational or experimental methods. Here, we developed a computationally efficient and data-driven state-space model to dynamically map wing kinematics to aerodynamic forces/moments. This model was trained and tested with a total of 548 different flapping-wing motions and surpassed the accuracy and generality of the existing quasi-steady models. This model used 12 states to capture the unsteady and nonlinear fluid effects pertinent to force generation without explicit information of fluid flows. We also provided a comprehensive assessment of the control authority of key wing kinematic variables and found that instantaneous aerodynamic forces/moments were largely predictable by the wing motion history within a half-stroke cycle. Furthermore, the angle of attack, normal acceleration and pitching motion had the strongest effects on the aerodynamic force/moment generation. Our results show that flapping flight inherently offers high force control authority and predictability, which can be key to developing agile and stable aerial fliers.

Funder

Army Research Office

National Science Foundation

Publisher

The Royal Society

Subject

Biomedical Engineering,Biochemistry,Biomaterials,Bioengineering,Biophysics,Biotechnology

Cited by 10 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3