Data-driven identification of complex disease phenotypes

Author:

Strauss Markus J.1ORCID,Niederkrotenthaler Thomas2ORCID,Thurner Stefan134ORCID,Kautzky-Willer Alexandra5ORCID,Klimek Peter13ORCID

Affiliation:

1. Complexity Science Hub Vienna, Josefstädter Straße 39, 1080 Wien, Austria

2. Unit Suicide Research and Mental Health Promotion, Department of Social and Preventive Medicine, Center for Public Health, Medical University of Vienna, Kinderspitalgasse 15, 1090 Wien, Austria

3. Section for Science of Complex Systems, CeMSIIS, Medical University of Vienna, Spitalgasse 23, 1090 Wien, Austria

4. Santa Fe Institute, 1399 Hyde Park Road, Santa Fe, NM 85701, USA

5. Department of Endocrinology and Metabolism, Internal Medicine III, Medical University of Vienna, Spitalgasse 23, 1090 Wien, Austria

Abstract

Disease interaction in multimorbid patients is relevant to treatment and prognosis, yet poorly understood. In the present work, we combine approaches from network science, machine learning and computational phenotyping to assess interactions between two or more diseases in a transparent way across the full diagnostic spectrum. We demonstrate that health states of hospitalized patients can be better characterized by including higher-order features capturing interactions between more than two diseases. We identify a meaningful set of higher-order diagnosis features that account for synergistic disease interactions in a population-wide ( N = 9 M) medical claims dataset. We construct a generalized disease network where (higher-order) diagnosis features are linked if they predict similar diagnoses across the whole diagnostic spectrum. The fact that specific diagnoses are generally represented multiple times in the network allows for the identification of putatively different disease phenotypes that may reflect different disease aetiologies. At the example of obesity, we demonstrate the purely data-driven detection of two complex phenotypes of obesity. As indicated by a matched comparison between patients having these phenotypes, we show that these phenotypes show specific characteristics of what has been controversially discussed in the medical literature as metabolically healthy and unhealthy obesity, respectively. The findings also suggest that metabolically healthy patients show some progression towards more unhealthy obesity over time, a finding that is consistent with longitudinal studies indicating a transient nature of metabolically healthy obesity. The disease network is available for exploration at https://disease.network/.

Funder

Österreichische Forschungsförderungsgesellschaft

Publisher

The Royal Society

Subject

Biomedical Engineering,Biochemistry,Biomaterials,Bioengineering,Biophysics,Biotechnology

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3