An in vitro agent-based modelling approach to optimization of culture medium for generating muscle cells

Author:

Hardman David1ORCID,Hennig Katharina2,Gomes Edgar R.2,Roman William3,Bernabeu Miguel O.14

Affiliation:

1. Centre for Medical Informatics, Usher Institute, The University of Edinburgh, Edinburgh EH16 4UX, UK

2. Instituto de Medicina Molecular, Faculdade de Medicina, Universidade de Lisboa, Avenida Professor Egas Moniz, 1649-028 Lisboa, Portugal

3. Australian Regenerative Medicine Institute, Monash University, Clayton, Australia

4. The Bayes Centre, University of Edinburgh, Edinburgh EH8 9BT, UK

Abstract

Methodologies for culturing muscle tissue are currently lacking in terms of quality and quantity of mature cells produced. We analyse images from in vitro experiments to quantify the effects of culture media composition on mouse-derived myoblast behaviour and myotube quality. Metrics of early indicators of cell quality were defined. Images of muscle cell differentiation reveal that altering culture media significantly affects quality indicators and myoblast migratory behaviours. To study the effects of early-stage cell behaviours on mature cell quality, metrics drawn from experimental images or inferred by approximate Bayesian computation (ABC) were applied as inputs to an agent-based model (ABM) of skeletal muscle cell differentiation with quality indicator metrics as outputs. Computational modelling was used to inform further in vitro experiments to predict the optimum media composition for culturing muscle cells. Our results suggest that myonuclei production in myotubes is inversely related to early-stage nuclei fusion index and that myonuclei density and spatial distribution are correlated with residence time of fusing myoblasts, the age at which myotube–myotube fusion ends and the repulsion force between myonuclei. Culture media with 5% serum was found to produce the optimum cell quality and to make muscle cells cultured in a neuron differentiation medium viable.

Funder

European Union Horizon 2020

Engineering and Physical Sciences Research Council

Publisher

The Royal Society

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3