Minimal reaction schemes for pattern formation

Author:

Waters Fraser R.12ORCID,Yates Christian A.12ORCID,Dawes Jonathan H. P.1ORCID

Affiliation:

1. Department of Mathematical Sciences, University of Bath, Bath BA2 7AY, UK

2. Centre for Mathematical Biology, University of Bath, Bath BA2 7AY, UK

Abstract

We link continuum models of reaction–diffusion systems that exhibit diffusion-driven instability to constraints on the particle-scale interactions underpinning this instability. While innumerable biological, chemical and physical patterns have been studied through the lens of Alan Turing's reaction–diffusion pattern-forming mechanism, the connections between models of pattern formation and the nature of the particle interactions generating them have been relatively understudied in comparison with the substantial efforts that have been focused on understanding proposed continuum systems. To derive the necessary reactant combinations for the most parsimonious reaction schemes, we analyse the emergent continuum models in terms of possible generating elementary reaction schemes. This analysis results in the complete list of such schemes containing the fewest reactions; these are the simplest possible hypothetical mass-action models for a pattern-forming system of two interacting species.

Funder

Engineering and Physical Sciences Research Council

Publisher

The Royal Society

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3