Predicting 1-year in-stent restenosis in superficial femoral arteries through multiscale computational modelling

Author:

Corti Anna1ORCID,Migliavacca Francesco1ORCID,Berceli Scott A.23ORCID,Chiastra Claudio4ORCID

Affiliation:

1. Laboratory of Biological Structure Mechanics (LaBS), Department of Chemistry, Materials and Chemical Engineering ‘Giulio Natta’, Politecnico di Milano, 20133 Milan, Italy

2. Department of Surgery, University of Florida, Gainesville, FL 32608, USA

3. Malcom Randall VAMC, Gainesville, FL 32608, USA

4. PoliToBIOMed Lab, Department of Mechanical and Aerospace Engineering, Politecnico di Torino, Corso Duca degli Abruzzi 24, 10129 Turin, Italy

Abstract

In-stent restenosis in superficial femoral arteries (SFAs) is a complex, multi-factorial and multiscale vascular adaptation process whose thorough understanding is still lacking. Multiscale computational agent-based modelling has recently emerged as a promising approach to decipher mechanobiological mechanisms driving the arterial response to the endovascular intervention. However, the long-term arterial response has never been investigated with this approach, although being of fundamental relevance. In this context, this study investigates the 1-year post-operative arterial wall remodelling in three patient-specific stented SFA lesions through a fully coupled multiscale agent-based modelling framework. The framework integrates the effects of local haemodynamics and monocyte gene expression data on cellular dynamics through a bi-directional coupling of computational fluid dynamics simulations with an agent-based model of cellular activities. The framework was calibrated on the follow-up data at 1 month and 6 months of one stented SFA lesion and then applied to the other two lesions. The calibrated framework successfully captured (i) the high lumen area reduction occurring within the first post-operative month and (ii) the stabilization of the median lumen area from 1-month to 1-year follow-ups in all the stented lesions, demonstrating the potentialities of the proposed approach for investigating patient-specific short- and long-term responses to endovascular interventions.

Funder

Fondazione Cariplo, Italy

Italian Ministry of Education

Publisher

The Royal Society

Subject

Biomedical Engineering,Biochemistry,Biomaterials,Bioengineering,Biophysics,Biotechnology

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3