Emergence of the reproduction matrix in epidemic forecasting

Author:

Gorji Hossein1ORCID,Stauffer Noé12ORCID,Lunati Ivan1ORCID

Affiliation:

1. Laboratory for Computational Engineering, Empa, Dübendorf, Switzerland

2. Chair of Computational Mathematics and Simulation Science, EPFL, Switzerland

Abstract

During the recent COVID-19 pandemic, the instantaneous reproduction number, R ( t ), has surged as a widely used measure to target public health interventions aiming at curbing the infection rate. In analogy with the basic reproduction number that arises from the linear stability analysis, R ( t ) is typically interpreted as a threshold parameter that separates exponential growth ( R ( t ) > 1) from exponential decay ( R ( t ) < 1). In real epidemics, however, the finite number of susceptibles, the stratification of the population (e.g. by age or vaccination state), and heterogeneous mixing lead to more complex epidemic courses. In the context of the multidimensional renewal equation, we generalize the scalar R ( t ) to a reproduction matrix, R ( t ) , which details the epidemic state of the stratified population, and offers a concise epidemic forecasting scheme. First, the reproduction matrix is computed from the available incidence data (subject to some a priori assumptions), then it is projected into the future by a transfer functional to predict the epidemic course. We demonstrate that this simple scheme allows realistic and accurate epidemic trajectories both in synthetic test cases and with reported incidence data from the COVID-19 pandemic. Accounting for the full heterogeneity and nonlinearity of the infection process, the reproduction matrix improves the prediction of the infection peak. In contrast, the scalar reproduction number overestimates the possibility of sustaining the initial infection rate and leads to an overshoot in the incidence peak. Besides its simplicity, the devised forecasting scheme offers rich flexibility to be generalized to time-dependent mitigation measures, contact rate, infectivity and vaccine protection.

Funder

Schweizerischer Nationalfonds zur Förderung der Wissenschaftlichen Forschung

Publisher

The Royal Society

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3