A growth model driven by curvature reproduces geometric features of arboreal termite nests

Author:

Facchini G.1ORCID,Lazarescu A.2ORCID,Perna A.1ORCID,Douady S.3

Affiliation:

1. Life Sciences Department, University of Roehampton, London, UK

2. Institut de Recherche en Mathématique et Physique, UCLouvain, Louvain-la-Neuve, Belgium

3. Laboratoire Matière et Systèmes Complexes, Université Paris Diderot, Paris, France

Abstract

We present a simple three-dimensional model to describe the autonomous expansion of a substrate whose growth is driven by the local mean curvature of its surface. The model aims to reproduce the nest construction process in arboreal Nasutitermes termites, whose cooperation may similarly be mediated by the shape of the structure they are walking on, for example focusing the building activity of termites where local mean curvature is high. We adopt a phase-field model where the nest is described by one continuous scalar field and its growth is governed by a single nonlinear equation with one adjustable parameter d . When d is large enough the equation is linearly unstable and fairly reproduces a growth process in which the initial walls expand, branch and merge, while progressively invading all the available space, which is consistent with the intricate structures of real nests. Interestingly, the linear problem associated with our growth equation is analogous to the buckling of a thin elastic plate under symmetric in-plane compression, which is also known to produce rich patterns through nonlinear and secondary instabilities. We validated our model by collecting nests of two species of arboreal Nasutitermes from the field and imaging their structure with a micro-computed tomography scanner. We found a strong resemblance between real and simulated nests, characterized by the emergence of a characteristic length scale and by the abundance of saddle-shaped surfaces with zero-mean curvature, which validates the choice of the driving mechanism of our growth model.

Funder

Fondation les Treilles

Royal Society

Publisher

The Royal Society

Subject

Biomedical Engineering,Biochemistry,Biomaterials,Bioengineering,Biophysics,Biotechnology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3