Hyperendemicity associated with increased dengue burden

Author:

Lim Jue Tao12ORCID,Dickens Borame Sue2,Tan Ken Wei2,Koo Joel Ruihan2,Seah Annabel1,Ho Soon Hoe1,Ong Janet1,Rajarethinam Jayanthi1,Soh Stacy1,Cook Alex R.2,Ng Lee Ching13

Affiliation:

1. Environmental Health Institute, National Environmental Agency, Singapore

2. Saw Swee Hock School of Public Health, National University of Singapore and National University Health System, Singapore

3. School of Biological Sciences, Nanyang Technological University, Singapore

Abstract

Over 105 million dengue infections are estimated to occur annually. Understanding the disease dynamics of dengue is often difficult due to multiple strains circulating within a population. Interactions between dengue serotype dynamics may result in complex cross-immunity dynamics at the population level and create difficulties in terms of formulating intervention strategies for the disease. In this study, a nationally representative 16-year time series with over 43 000 serotyped dengue infections was used to infer the long-run effects of between and within strain interactions and their impacts on past outbreaks. We used a novel identification strategy incorporating sign-identified Bayesian vector autoregressions, using structural impulse responses, historical decompositions and counterfactual analysis to conduct inference on dengue dynamics post-estimation. We found that on the population level: (i) across-serotype interactions on the population level were highly persistent, with a one time increase in any other serotype associated with long run decreases in the serotype of interest (range: 0.5–2.5 years) and (ii) over 38.7% of dengue cases of any serotype were associated with across-serotype interactions. The findings in this paper will substantially impact public health policy interventions with respect to dengue.

Funder

National Medical Research Council

Publisher

The Royal Society

Subject

Biomedical Engineering,Biochemistry,Biomaterials,Bioengineering,Biophysics,Biotechnology

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3