Affiliation:
1. Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
2. Department of Mechanical Engineering and Applied Mechanics, University of Pennsylvania, Philadelphia, PA 19104, USA
Abstract
The aim of this paper is to place the cell locomotion problem within the general framework of classical continuum mechanics, and while doing so, to account for the deformation of the actin network in the cytoskeleton; the myosin activity on the lamellum including its effect on depolymerization at the trailing edge; model the stress-dependent driving forces and kinetic laws controlling polymerization at the leading edge, depolymerization at the trailing edge and ATP hydrolysis consistently with the dissipation inequality; and, based on the observations in Gardel
et al.
(Gardel
et al.
2008
J. Cell Biol.
183
, 999–1005 (
doi:10.1083/jcb.200810060
)), include a biphasic velocity-dependent traction stress acting on the actin network. While we chose certain specific models for each of these, in part to allow for an analytical solution, the generality of the framework allows one to readily introduce different constitutive laws to describe these phenomena as might be needed, for example, to study some different type of cells. As described in §5, the predictions of the model compare well with observations such as the magnitude of the very different actin retrograde speeds in the lamellum and lamellipodium including their jump at the interface, the magnitude of the cell speed, and the relative lengths of the lamellipodium and lamellum.
Funder
National Institutes of Health