Human in vivo midtarsal and subtalar joint kinematics during walking, running and hopping

Author:

Behling Anja-Verena12ORCID,Welte Lauren34,Kelly Luke156,Rainbow Michael J.2

Affiliation:

1. School of Human Movement and Nutrition Science, The University of Queensland , Brisbane, Queensland, Australia

2. Department of Mechanical and Materials Engineering, Queen’s University , Kingston, Ontario, Canada

3. Mechanical Engineering, University of Alberta , Edmonton, Alberta, Canada

4. Biomedical Engineering, University of Alberta , Edmonton, Alberta, Canada

5. Griffith Centre of Biomedical & Rehabilitation Engineering, Griffith University , Gold Coast, Queensland, Australia

6. School of Health Sciences & Social Work, Griffith University , Gold Coast, Queensland, Australia

Abstract

The interaction among joints of the midtarsal complex and subtalar joint is important for locomotor function; however, its complexity poses substantial challenges in quantifying the joints’ motions. We determine the mobility of these joints across locomotion tasks and investigate the influence of individual talus morphology on their motion. Using highly accurate biplanar videoradiography, three-dimensional bone kinematics were captured during walking, running and hopping. We calculated the axis of rotation of the midtarsal complex and subtalar joint for the landing and push-off phases. A comparison was made between these rotation axes and the morphological subtalar axis. Measurement included total rotation about and the orientation of the rotation axes in the direction of the subtalar joint and its deviation via spatial angles for both phases. The rotation axes of all three bones relative to the talus closely align with the morphological subtalar axis. This suggests that the midtarsal and subtalar joints’ motions might be described by one commonly oriented axis. Despite having such an axis, the location of the axes and ranges of motion differed among the bones. Our results provide a novel perspective of healthy foot function across different sagittal plane-dominant locomotion tasks underscoring the importance of quantifying midtarsal complex and subtalar motion while accounting for an individual’s talus morphology.

Funder

Natural Sciences and Engineering Research Council of Canada Discover Grant

Australian Research Council Discover Early Career Research Award

International Society of Biomechanics Matching Dissertation Grant

Natural Sciences and Engineering Research Council Postdoctoral Fellowship

Publisher

The Royal Society

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3