Branching principles of animal and plant networks identified by combining extensive data, machine learning and modelling

Author:

Brummer Alexander B.123ORCID,Lymperopoulos Panagiotis4,Shen Jocelyn5,Tekin Elif13ORCID,Bentley Lisa P.6,Buzzard Vanessa7,Gray Andrew8,Oliveras Imma9ORCID,Enquist Brian J.810,Savage Van M.12310

Affiliation:

1. Institute for Quantitative and Computational Biology, University of California, Los Angeles, CA, USA

2. Department of Ecology and Evolutionary Biology, University of California, Los Angeles, CA, USA

3. Department of Computational Medicine, David Geffen School of Medicine, University of California, Los Angeles, CA, USA

4. Department of Computer Science, Tufts University, Medford, MA, USA

5. Department of Electrical Engineering and Computer Science, Massachusetts Institute of Technology, Cambridge, MA, USA

6. Department of Biology, Sonoma State University, Rohnert Park, CA, USA

7. School of Natural Resources and the Environment, University of Arizona, Tucson, AZ, USA

8. Department of Ecology and Evolutionary Biology, University of Arizona, Tucson, AZ, USA

9. Environmental Change Institute, School of Geography and the Environment, University of Oxford, Oxford, UK

10. Santa Fe Institute, Santa Fe, NM, USA

Abstract

Branching in vascular networks and in overall organismic form is one of the most common and ancient features of multicellular plants, fungi and animals. By combining machine-learning techniques with new theory that relates vascular form to metabolic function, we enable novel classification of diverse branching networks—mouse lung, human head and torso, angiosperm and gymnosperm plants. We find that ratios of limb radii—which dictate essential biologic functions related to resource transport and supply—are best at distinguishing branching networks. We also show how variation in vascular and branching geometry persists despite observing a convergent relationship across organisms for how metabolic rate depends on body mass.

Funder

Division of Biological Infrastructure

Publisher

The Royal Society

Subject

Biomedical Engineering,Biochemistry,Biomaterials,Bioengineering,Biophysics,Biotechnology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3