Incorporating domain growth into hybrid methods for reaction–diffusion systems

Author:

Smith Cameron A.1ORCID,Yates Christian A.1ORCID

Affiliation:

1. Centre for Mathematical Biology, Department of Mathematical Sciences, University of Bath, Claverton Down, Bath BA2 7AY, UK

Abstract

Reaction–diffusion mechanisms are a robust paradigm that can be used to represent many biological and physical phenomena over multiple spatial scales. Applications include intracellular dynamics, the migration of cells and the patterns formed by vegetation in semi-arid landscapes. Moreover, domain growth is an important process for embryonic growth and wound healing. There are many numerical modelling frameworks capable of simulating such systems on growing domains; however, each of these may be well suited to different spatial scales and particle numbers. Recently, spatially extended hybrid methods on static domains have been produced to bridge the gap between these different modelling paradigms in order to represent multi-scale phenomena. However, such methods have not been developed with domain growth in mind. In this paper, we develop three hybrid methods on growing domains, extending three of the prominent static-domain hybrid methods. We also provide detailed algorithms to allow others to employ them. We demonstrate that the methods are able to accurately model three representative reaction–diffusion systems accurately and without bias.

Funder

Engineering and Physical Sciences Research Council

Publisher

The Royal Society

Subject

Biomedical Engineering,Biochemistry,Biomaterials,Bioengineering,Biophysics,Biotechnology

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3