Realistic three-dimensional avian vocal tract model demonstrates how shape affects sound filtering ( Passer domesticus )

Author:

Kazemi Alireza12ORCID,Kesba Mariam12,Provini Pauline123ORCID

Affiliation:

1. Inserm, System Engineering and Evolution Dynamics, Université Paris Cité, 75004 Paris, France

2. Learning Planet Institute, 75004 Paris, France

3. Département Adaptations du Vivant, UMR MECADEV 7179 CNRS/Muséum National d'Histoire Naturelle, Paris, France

Abstract

Despite the complex geometry of songbird's vocal system, it was typically modelled as a tube or with simple mathematical parameters to investigate sound filtering. Here, we developed an adjustable computational acoustic model of a sparrow's upper vocal tract ( Passer domesticus ), derived from micro-CT scans. We discovered that a 20% tracheal shortening or a 20° beak gape increase caused the vocal tract harmonic resonance to shift toward higher pitch (11.7% or 8.8%, respectively), predominantly in the mid-range frequencies (3–6 kHz). The oropharyngeal-oesophageal cavity (OEC), known for its role in sound filtering, was modelled as an adjustable three-dimensional cylinder. For a constant OEC volume, an elongated cylinder induced a higher frequency shift than a wide cylinder (70% versus 37%). We found that the OEC volume adjustments can modify the OEC first harmonic resonance at low frequencies (1.5–3 kHz) and the OEC third harmonic resonance at higher frequencies (6–8 kHz). This work demonstrates the need to consider the realistic geometry of the vocal system to accurately quantify its effect on sound filtering and show that sparrows can tune the entire range of produced sound frequencies to their vocal system resonances, by controlling the vocal tract shape, especially through complex OEC volume adjustments.

Funder

Bettencourt Schueller Foundation

Publisher

The Royal Society

Subject

Biomedical Engineering,Biochemistry,Biomaterials,Bioengineering,Biophysics,Biotechnology

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3