Evaluation of scaffold microstructure and comparison of cell seeding methods using micro-computed tomography-based tools

Author:

Palmroth Aleksi1ORCID,Pitkänen Sanna23ORCID,Hannula Markus4ORCID,Paakinaho Kaarlo25,Hyttinen Jari4ORCID,Miettinen Susanna23ORCID,Kellomäki Minna1ORCID

Affiliation:

1. Biomaterials and Tissue Engineering Group, BioMediTech, Faculty of Medicine and Health Technology, Tampere University, Korkeakoulunkatu 3, 33720 Tampere, Finland

2. Adult Stem Cell Group, Tampere University, Tampere, Finland

3. Research, Development and Innovation Centre, Tampere University Hospital, Tampere, Finland

4. Computational Biophysics and Imaging Group, BioMediTech, Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland

5. Orton Orthopaedic Hospital, Helsinki, Finland

Abstract

Micro-computed tomography (micro-CT) provides a means to analyse and model three-dimensional (3D) tissue engineering scaffolds. This study proposes a set of micro-CT-based tools firstly for evaluating the microstructure of scaffolds and secondly for comparing different cell seeding methods. The pore size, porosity and pore interconnectivity of supercritical CO 2 processed poly( l -lactide-co- ɛ -caprolactone) (PLCL) and PLCL/β-tricalcium phosphate scaffolds were analysed using computational micro-CT models. The models were supplemented with an experimental method, where iron-labelled microspheres were seeded into the scaffolds and micro-CT imaged to assess their infiltration into the scaffolds. After examining the scaffold architecture, human adipose-derived stem cells (hASCs) were seeded into the scaffolds using five different cell seeding methods. Cell viability, number and 3D distribution were evaluated. The distribution of the cells was analysed using micro-CT by labelling the hASCs with ultrasmall paramagnetic iron oxide nanoparticles. Among the tested seeding methods, a forced fluid flow-based technique resulted in an enhanced cell infiltration throughout the scaffolds compared with static seeding. The current study provides an excellent set of tools for the development of scaffolds and for the design of 3D cell culture experiments.

Funder

Tekes

Publisher

The Royal Society

Subject

Biomedical Engineering,Biochemistry,Biomaterials,Bioengineering,Biophysics,Biotechnology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3