Application of machine learning in predicting blood flow and red cell distribution in capillary vessel networks

Author:

Ebrahimi Saman1,Bagchi Prosenjit1ORCID

Affiliation:

1. Mechanical and Aerospace Engineering Department, Rutgers, The State University of New Jersey, Piscataway, NJ 08854, USA

Abstract

Capillary blood vessels in the body partake in the exchange of gas and nutrients with tissues. They are interconnected via multiple vascular junctions forming the microvascular network. Distributions of blood flow and red cells (RBCs) in such networks are spatially uneven and vary in time. Since they dictate the pathophysiology of tissues, their knowledge is important. Theoretical models used to obtain flow and RBC distribution in large networks have limitations as they treat each vessel as a one-dimensional segment and do not explicitly consider cell–cell and cell–vessel interactions. High-fidelity computational models that accurately model each individual RBC are computationally too expensive to predict haemodynamics in large vascular networks and over a long time. Here we investigate the applicability of machine learning (ML) techniques to predict blood flow and RBC distributions in physiologically realistic vascular networks. We acquire data from high-fidelity simulations of deformable RBC suspension flowing in the networks. With the flow and haematocrit specified at an inlet of vasculature, the ML models predict the time-averaged flow rate and RBC distributions in the entire network, time-dependent flow rate and haematocrit in each vessel and vascular bifurcation in isolation over a long time, and finally, simultaneous spatially and temporally evolving quantities through the vessel hierarchy in the networks.

Funder

National Institute of Health

Publisher

The Royal Society

Subject

Biomedical Engineering,Biochemistry,Biomaterials,Bioengineering,Biophysics,Biotechnology

Reference62 articles.

1. Microvasculature in Health and Disease

2. Fung YC. 1996 Biomechanics: circulation, 2nd edn. Berlin, Germany: Springer.

3. Blood Flow in the Microcirculation

4. Pries AR, Secomb TW. 2008 Blood flow in microvascular networks. In Handbook of physiology: microcirculation, 2nd edn (eds RF Tuma, WN Duran, K Ley), pp. 3-36. Academic Press.

5. Hemorheology and Hemodynamics

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3