Immunological heterogeneity informs estimation of the durability of vaccine protection

Author:

Domenech de Cellès Matthieu1ORCID,Wong Anabelle12ORCID,Andrea Barrero Guevara Laura12ORCID,Rohani Pejman345ORCID

Affiliation:

1. Infectious Disease Epidemiology group, Max Planck Institute for Infection Biology, 10117 Berlin, Germany

2. Institute of Public Health, Charité—Universitätsmedizin Berlin, 10117 Berlin, Germany

3. Odum School of Ecology, University of Georgia, Athens, GA 30602, USA

4. Department of Infectious Diseases, University of Georgia, Athens, GA 30602, USA

5. Center for Influenza Disease & Emergence Research (CIDER), University of Georgia, Athens, GA 30602, USA

Abstract

Deciphering the properties of vaccines against an emerging pathogen is essential for optimizing immunization strategies. Early after vaccine roll-out, however, uncertainties about vaccine immunity raise the question of how much time is needed to estimate these properties, particularly the durability of vaccine protection. Here we designed a simulation study, based on a generic transmission model of vaccination, to simulate the impact of a breadth of vaccines with different mean (range: 10 months–2 years) and variability (coefficient of variation range: 50–100%) of the duration of protection. Focusing on the dynamics of SARS-CoV-2 in the year after start of mass immunization in Germany as a case study, we then assessed how confidently the duration of protection could be estimated under a range of epidemiological scenarios. We found that lower mean and higher heterogeneity facilitated estimation of the duration of vaccine protection. Across the vaccines tested, rapid waning and high heterogeneity permitted complete identification of the duration of protection; by contrast, slow waning and low heterogeneity allowed only estimation of the fraction of vaccinees with rapid loss of immunity. These findings suggest that limited epidemiological data can inform the duration of vaccine immunity. More generally, they highlight the need to carefully consider immunological heterogeneity when designing transmission models to evaluate vaccines.

Publisher

The Royal Society

Subject

Biomedical Engineering,Biochemistry,Biomaterials,Bioengineering,Biophysics,Biotechnology

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3