Spatio-temporal reconstruction of emergent flash synchronization in firefly swarms via stereoscopic 360-degree cameras

Author:

Sarfati Raphaël1ORCID,Hayes Julie C.1ORCID,Sarfati Élie2,Peleg Orit134ORCID

Affiliation:

1. BioFrontiers Institute, University of Colorado Boulder, Boulder, CO, USA

2. Rubika Supinfogame, Valenciennes, France

3. Computer Science, University of Colorado Boulder, Boulder, CO, USA

4. Santa Fe Institute, Santa Fe, NM, USA

Abstract

During mating season, males of synchronous firefly species flash in unison within swarms of thousands of individuals. These strongly correlated collective displays have inspired numerous mathematical models to explain how global synchronous patterns emerge from local interactions. Yet, experimental data to validate these models remain sparse. To address this gap, we develop a method for three-dimensional tracking of firefly flashes, using a stereoscopic set-up of 360-degree cameras. We apply this method to record flashing displays of the North American synchronous species Photinus carolinus in its natural habitat as well as within controlled environments, and obtain the three-dimensional reconstruction of flash occurrences in the swarm. Our results show that even a small number of interacting males synchronize their flashes; however, periodic flash bursts only occur in groups larger than 15 males. Moreover, flash occurrences are correlated over several metres, indicating long-range interactions. While this suggests emergent collective behaviour and cooperation, we identify distinct individual trajectories that hint at additional competitive mechanisms. These reveal possible behavioural differentiation with early flashers being more mobile and flashing longer than late followers. Our experimental technique is inexpensive and easily implemented. It is extensible to tracking light communication in various firefly species and flight trajectories in other insect swarms.

Publisher

The Royal Society

Subject

Biomedical Engineering,Biochemistry,Biomaterials,Bioengineering,Biophysics,Biotechnology

Cited by 35 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3