Structure-based Hamiltonian model for IsiA uncovers a highly robust pigment–protein complex

Author:

Schoffman Hanan1,Brown William M.2,Paltiel Yossi3,Keren Nir1,Gauger Erik M.2ORCID

Affiliation:

1. Department of Plant and Environmental Sciences, The Alexander Silberman Institute of Life Sciences, The Hebrew University of Jerusalem, Jerusalem 91904, Israel

2. SUPA, Institute of Photonics and Quantum Sciences, Heriot-Watt University, Edinburgh EH14 4AS, UK

3. Applied Physics Department, The Hebrew University of Jerusalem, Jerusalem 91904, Israel

Abstract

The iron stress-induced protein A (IsiA) is a source of interest and debate in biological research. The IsiA supercomplex, binding over 200 chlorophylls, assembles in multimeric rings around photosystem I (PSI). Recently, the IsiA–PSI structure from Synechocystis sp. PCC 6803 was resolved to 3.48 Å. Based on this structure, we created a model simulating a single excitation event in an IsiA monomer. This model enabled us to calculate the fluorescence and the localization of the excitation in the IsiA structure. To further examine this system, noise was introduced to the model in two forms—thermal and positional. Introducing noise highlights the functional differences in the system between cryogenic temperatures and biologically relevant temperatures. Our results show that the energetics of the IsiA pigment–protein complex are very robust at room temperature. Nevertheless, shifts in the position of specific chlorophylls lead to large changes in their optical and fluorescence properties. Based on these results, we discuss the implication of highly robust structures, with potential for serving different roles in a context-dependent manner, on our understanding of the function and evolution of photosynthetic processes.

Funder

ISF

ISF-NSFC

Engineering and Physical Sciences Research Council

Royal Society of Edinburgh

Publisher

The Royal Society

Subject

Biomedical Engineering,Biochemistry,Biomaterials,Bioengineering,Biophysics,Biotechnology

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3