Forcing the issue: testing gecko-inspired adhesives

Author:

Suresh Srinivasan A.1ORCID,Hajj-Ahmad Amar1ORCID,Hawkes Elliot W.2ORCID,Cutkosky Mark R.1ORCID

Affiliation:

1. Department of Mechanical Engineering, Stanford University, Stanford, CA 94305, USA

2. Department of Mechanical Engineering, University of California, Santa Barbara, CA 93106, USA

Abstract

Materials are traditionally tested either by imposing controlled displacements and measuring the corresponding forces, or by imposing controlled forces. The first of these approaches is more common because it is straightforward to control the displacements of a stiff apparatus and, if the material suddenly fails, little energy is released. However, when testing gecko-inspired adhesives, an applied force paradigm is closer to how the adhesives are loaded in practice. Moreover, we demonstrate that the controlled displacement paradigm can lead to artefacts in the assumed behaviour unless the imposed loading trajectory precisely matches the deflections that would occur in applications. We present the design of a controlled-force system and protocol for testing directional gecko-inspired adhesives and show that results obtained with it are in some cases substantially different from those with controlled-displacement testing. An advantage of the controlled-force testing approach is that it allows accurate generation of adhesive limit curves without prior knowledge of the expected behaviour of the material or the loading details associated with practical applications.

Funder

National Aeronautics and Space Administration

National Science Foundation

Publisher

The Royal Society

Subject

Biomedical Engineering,Biochemistry,Biomaterials,Bioengineering,Biophysics,Biotechnology

Cited by 13 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Capillary adhesion of stick insects;Annals of the New York Academy of Sciences;2024-08

2. Asymmetric toughening in the lap shear of metamaterial structural adhesives;Soft Matter;2024

3. From Adhesion to Detachment: Strategies to Design Tissue‐Adhesive Hydrogels;Advanced NanoBiomed Research;2023-12-22

4. Application of machine learning to object manipulation with bio-inspired microstructures;Journal of Materials Research and Technology;2023-11

5. GRASP: Grocery Robot's Adhesion and Suction Picker;IEEE Robotics and Automation Letters;2023-10

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3