Biomechanics of pollen pellet removal by the honey bee

Author:

Matherne Marguerite1,Dowell-Esquivel Caroline2,Howington Oliver3,Lenaghan Olivia1,Steinbach Gabi4,Yunker Peter J.4,Hu David L.15ORCID

Affiliation:

1. School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, GA 30332, USA

2. School of Biomedical Engineering, Georgia Institute of Technology, Atlanta, GA 30332, USA

3. School of Biology, University of North Georgia, Oakwood, GA 30566, USA

4. School of Physics, Georgia Institute of Technology, Atlanta, GA 30332, USA

5. School of Biology, Georgia Institute of Technology, Atlanta, GA 30332, USA

Abstract

Honey bees ( Apis mellifera ) carry pollen back to their hive by mixing it with nectar and forming it into a pellet. The pellet must be firmly attached to their legs during flight, but also easily removable when deposited in the hive. How does the honey bee achieve these contrary aims? In this experimental study, we film honey bees removing pollen pellets and find they peel them off at speeds 2–10 times slower than their typical grooming speeds. Using a self-built pollen scraper, we find that slow removal speeds reduce the force and work required to remove the pellet under shear stress. Creep tests on individual pollen pellets revealed that pollen pellets are viscoelastic materials characterized by a Maxwell model with long relaxation times. The relaxation time enables the pellet to remain a solid during both transport and removal. We hope that this work inspires further research into viscoelastic materials in nature.

Funder

National Science Foundation

National Institute of Food and Agriculture

Publisher

The Royal Society

Subject

Biomedical Engineering,Biochemistry,Biomaterials,Bioengineering,Biophysics,Biotechnology

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3