On the relationship between serial interval, infectiousness profile and generation time

Author:

Lehtinen Sonja1ORCID,Ashcroft Peter1ORCID,Bonhoeffer Sebastian1ORCID

Affiliation:

1. Institute for Integrative Biology, Department of Environmental System Science, ETH Zürich, Zürich, Switzerland

Abstract

The timing of transmission plays a key role in the dynamics and controllability of an epidemic. However, observing generation times—the time interval between the infection of an infector and an infectee in a transmission pair—requires data on infection times, which are generally unknown. The timing of symptom onset is more easily observed; generation times are therefore often estimated based on serial intervals—the time interval between symptom onset of an infector and an infectee. This estimation follows one of two approaches: (i) approximating the generation time distribution by the serial interval distribution or (ii) deriving the generation time distribution from the serial interval and incubation period—the time interval between infection and symptom onset in a single individual—distributions. These two approaches make different—and not always explicitly stated—assumptions about the relationship between infectiousness and symptoms, resulting in different generation time distributions with the same mean but unequal variances. Here, we clarify the assumptions that each approach makes and show that neither set of assumptions is plausible for most pathogens. However, the variances of the generation time distribution derived under each assumption can reasonably be considered as upper (approximation with serial interval) and lower (derivation from serial interval) bounds. Thus, we suggest a pragmatic solution is to use both approaches and treat these as edge cases in downstream analysis. We discuss the impact of the variance of the generation time distribution on the controllability of an epidemic through strategies based on contact tracing, and we show that underestimating this variance is likely to overestimate controllability.

Funder

Schweizerischer Nationalfonds zur Förderung der Wissenschaftlichen Forschung

Publisher

The Royal Society

Subject

Biomedical Engineering,Biochemistry,Biomaterials,Bioengineering,Biophysics,Biotechnology

Cited by 53 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3