Affiliation:
1. MRC-University of Glasgow Centre for Virus Research , Glasgow, UK
2. Department of Clinical Research, London School of Hygiene and Tropical Medicine , London, UK
Abstract
Viruses that infect animals regularly spill over into the human population, but individual events may lead to anything from a single case to a novel pandemic. Rapidly gaining an understanding of a spillover event is critical to calibrating a public health response. We here propose a novel method, using likelihood-free rejection sampling, to evaluate the properties of an outbreak of swine-origin influenza A(H1N2)v in the United Kingdom, detected in November 2023. From the limited data available, we generate historical estimates of the probability that the outbreak had died out in the days following the detection of the first case. Our method suggests that the outbreak could have been said to be over with 95% certainty between 19 and 29 days after the first case was detected, depending upon the probability of a case being detected. We further estimate the number of undetected cases conditional upon the outbreak still being live, the epidemiological parameter
R
0
, and the date on which the spillover event itself occurred. Our method requires minimal data to be effective. While our calculations were performed after the event, the real-time application of our method has potential value for public health responses to cases of emerging viral infection.
Funder
UK Medical Research Council