Contact-tracing in cultural evolution: a Bayesian mixture model to detect geographic areas of language contact

Author:

Ranacher Peter123ORCID,Neureiter Nico123ORCID,van Gijn Rik4ORCID,Sonnenhauser Barbara5ORCID,Escher Anastasia5,Weibel Robert123ORCID,Muysken Pieter6ORCID,Bickel Balthasar137ORCID

Affiliation:

1. University Research Priority Program (URPP) Language and Space, University of Zurich, Zurich, Switzerland

2. Department of Geography, University of Zurich, Zurich, Switzerland

3. Center for the Interdisciplinary Study of Language Evolution (ISLE), University of Zurich, Zurich, Switzerland

4. Leiden University Centre for Linguistics, Leiden, Netherlands

5. Department of Slavonic Languages and Literatures, University of Zurich, Zurich, Switzerland

6. Centre for Language Studies, Radboud University Nijmegen, Nijmegen, Netherlands

7. Department of Comparative Language Science, University of Zurich, Zurich, Switzerland

Abstract

When speakers of different languages interact, they are likely to influence each other: contact leaves traces in the linguistic record, which in turn can reveal geographical areas of past human interaction and migration. However, other factors may contribute to similarities between languages. Inheritance from a shared ancestral language and universal preference for a linguistic property may both overshadow contact signals. How can we find geographical contact areas in language data, while accounting for the confounding effects of inheritance and universal preference? We present sBayes , an algorithm for Bayesian clustering in the presence of confounding effects. The algorithm learns which similarities are better explained by confounders, and which are due to contact effects. Contact areas are free to take any shape or size, but an explicit geographical prior ensures their spatial coherence. We test sBayes on simulated data and apply it in two case studies to reveal language contact in South America and the Balkans. Our results are supported by findings from previous studies. While we focus on detecting language contact, the method can also be used to uncover other traces of shared history in cultural evolution, and more generally, to reveal latent spatial clusters in the presence of confounders.

Funder

NCCR Evolving Language

Swiss NSF Sinergia Project Linguistic Morphology in Time and Space

ERC consolidator project South American Population History Revisited

Swiss NSF Sinergia Project Out of Asia: Linguistic Diversity and Population History

Publisher

The Royal Society

Subject

Biomedical Engineering,Biochemistry,Biomaterials,Bioengineering,Biophysics,Biotechnology

Reference88 articles.

1. Schuchardt H. 1884 Dem Herrn Franz von Miklosich zum 20. Nov. 1883: Slawo-Deutsches und Slawo-Italienisches. Graz, Austria: Leuschner & Lubensky.

2. Large and ancient linguistic areas

3. Campbell L. 2006 Areal linguistics: a closer scrutiny. In Linguistic areas: convergence in historical and typological perspective (eds Y Matras A McMahon N Vincent) pp. 1–31. Basingstoke UK: Palgrave MacMillan.

4. Dahl Ö. 2001 Principles of areal typology. In Language typology and language universals vol. 2 (eds M Haspelmath E König W Oesterreicher W Raible). Berlin Germany: Mouton de Gruyter.

5. On the shape and fabric of human history

Cited by 15 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3