No apparent effect of a magnetic pulse on free-flight behaviour in northern wheatears ( Oenanthe oenanthe ) at a stopover site

Author:

Karwinkel Thiemo12ORCID,Winklhofer Michael23ORCID,Christoph Paula12,Allenstein Dario12,Hüppop Ommo1ORCID,Brust Vera1ORCID,Bairlein Franz14ORCID,Schmaljohann Heiko12ORCID

Affiliation:

1. Institute of Avian Research ‘Vogelwarte Helgoland’, An der Vogelwarte 21, 26386 Wilhelmshaven, Germany

2. Institute for Biology and Environmental Sciences (IBU), Carl von Ossietzky University of Oldenburg, Carl-von-Ossietzky-Straße 9-11, 26129 Oldenburg, Germany

3. Research Center for Neurosensory Sciences, Carl von Ossietzky University Oldenburg, 26111 Oldenburg, Germany

4. Max Planck Institute of Animal Behavior, Am Obstberg 1, 78315 Radolfzell, Germany

Abstract

Naïve migrants reach their wintering grounds following a clock-and-compass strategy. During these inaugural migrations, birds internalise, among others, cues from the Earth's magnetic field to create a geomagnetic map, with which they navigate to destinations familiar to them on subsequent migrations. Geomagnetic map cues are thought to be sensed by a magnetic-particle-based receptor, which can be specifically affected by a magnetic pulse. Indeed, the orientation of experienced but not naïve birds was compromised after magnetic pulsing, indicating geomagnetic map use. Little is known about the importance of this putative magnetoreceptor for navigation and decision-making in free-flying migrants. Therefore, we studied in unprecedented detail how a magnetic pulse would affect departure probability, nocturnal departure timing, departure direction and consistency in flight direction over 50–100 km in experienced and naïve long-distant migrant songbirds using a large-scale radio-tracking system. Contrary to our expectations and despite a high sample size ( n total = 137) for a free-flight study, we found no significant after-effect of the magnetic pulse on the migratory traits, suggesting the geomagnetic map is not essential for the intermediate autumn migration phase. These findings warrant re-thinking about perception and use of geomagnetic maps for migratory decisions within a sensory and ecological context.

Funder

Bundesamt für Naturschutz

Deutsche Forschungsgemeinschaft

Publisher

The Royal Society

Subject

Biomedical Engineering,Biochemistry,Biomaterials,Bioengineering,Biophysics,Biotechnology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3