The non-deterministic genotype–phenotype map of RNA secondary structure

Author:

García-Galindo Paula1ORCID,Ahnert Sebastian E.12ORCID,Martin Nora S.3ORCID

Affiliation:

1. Department of Chemical Engineering and Biotechnology, University of Cambridge, Philippa Fawcett Drive, Cambridge CB3 0AS, UK

2. The Alan Turing Institute, 96 Euston Road, London NW1 2DB, UK

3. Rudolf Peierls Centre for Theoretical Physics, Beecroft Building, Parks Road, Oxford OX1 3PU, UK

Abstract

Selection and variation are both key aspects in the evolutionary process. Previous research on the mapping between molecular sequence (genotype) and molecular fold (phenotype) has shown the presence of several structural properties in different biological contexts, implying that these might be universal in evolutionary spaces. The deterministic genotype–phenotype (GP) map that links short RNA sequences to minimum free energy secondary structures has been studied extensively because of its computational tractability and biologically realistic nature. However, this mapping ignores the phenotypic plasticity of RNA. We define a GP map that incorporates non-deterministic (ND) phenotypes, and take RNA as a case study; we use the Boltzmann probability distribution of folded structures and examine the structural properties of ND GP maps for RNA sequences of length 12 and coarse-grained RNA structures of length 30 (RNAshapes30). A framework is presented to study robustness, evolvability and neutral spaces in the ND map. This framework is validated by demonstrating close correspondence between the ND quantities and sample averages of their deterministic counterparts. When using the ND framework we observe the same structural properties as in the deterministic GP map, such as bias, negative correlation between genotypic robustness and evolvability, and positive correlation between phenotypic robustness and evolvability.

Funder

Issachar Fund

'la Caixa' Foundation

Publisher

The Royal Society

Subject

Biomedical Engineering,Biochemistry,Biomaterials,Bioengineering,Biophysics,Biotechnology

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3