Non-motile sensory cilia and neuromuscular junctions in a ctenophore independent effector organ

Author:

Abstract

Non-motile cilia of the (9 + 2) pattern, having a specialized onion-like root structure, act as sensitive receptors of water displacement and thereby detect vibrations of small objects in the water nearby. These receptors are situated on sensory nerve cells on finger-like processes up to 1 cm long, on the surface of the ctenophoreLeucothea( =Eucharis) multicornis. In response to vibration a single finger can shoot outwards as an independent effector by an extension of its mesogloeal hydrostatic skeleton, acted on by circular and transverse muscle fibres which run mainly through the mesogloea. A copepod which may be hit is immobilized, presumably by a poisonous secretion. Retraction is brought about by longitudinal ectodermal fibres. The neuromuscular junctions have presynaptic vesicles of 30 to 50 nm diameter, a cleft of 15 to 20 nm wide, and occur at discrete points far from each other on the muscle cells, suggesting that excitation is propagated along the muscle fibres. No direct connexion has been traced between a sensory ciliated cell and a muscle fibre, but sensory cells connect with nerve net neurons and these form synapses with each other and with muscle cells. There are numerous nerve fibres in the epithelium and synapses with vesicles on one side of a cleft 12 to 15 nm wide occur between them sufficiently closely for spatial summation to be possible. The separate co-ordination of movements of extension, retraction and bending requires that certain types of sensory cells be connected specifically, if in directly, with muscle fibres of a particular directionality. This provides a primitive example of specificity of connexions which must imply two overlapping nerve nets.

Publisher

The Royal Society

Subject

General Medicine

Cited by 84 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Scanning Electron Microscopy of Ctenophores: Illustrative Atlas;Methods in Molecular Biology;2024

2. Brief History of Ctenophora;Methods in Molecular Biology;2024

3. Illustrated Neuroanatomy of Ctenophores: Immunohistochemistry;Methods in Molecular Biology;2024

4. Alternative neural systems: What is a neuron? (Ctenophores, sponges and placozoans);Frontiers in Cell and Developmental Biology;2022-12-23

5. The structure and function of centriolar rootlets;Journal of Cell Science;2021-08-15

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3