Studies on the amino acid sequence of heavy chains from rabbit immunoglobulin G

Author:

Abstract

It is now generally agreed that the four-chain subunit structure of Immunoglobulins which was first proposed by Porter (1962), accurately represents the gross structure of immunoglobulin G (IgG) and specific antibodies (Fleischman, Porter & Press 1963; Edelman & Gally 1964; Marler, Nelson & Tanford 1964; Nelson et al . 1965). However, an understanding of the structural basis of antibody specificity requires greater insight into the amino acid sequence of the polypeptide chain components of specific antibodies. Isolated light chains from specific antibodies and inert IgG, show a considerable degree of electrophoretic heterogeneity (Edelman & Gally 1964; Cohen & Porter 1964; Poulik 1964). Tryptic peptide maps of light chains (Nelson et al . 1965) have suggested that this heterogeneity may be accounted for by differences in amino acid sequence. This view has received considerable support from the observation that Bence-Jones proteins, which may be regarded as light chains, vary significantly in amino acid sequence (Hilschman & Craig 1965; Milstein 1966; Titani, Whitley & Putman 1966). A similar but less well-defined sequence heterogeneity has been suggested to exist in the heavy chains of specific antibodies (Feinstein 1964). However, the Fc fragment of the heavy chains has been thought to possess a regular amino acid sequence which may be similar, if not identical, among all specific antibodies (Porter 1959; Nelson et al . 1965). This paper summarizes the results of studies on the amino acid sequence of heavy chains and that portion of heavy chain, Fc fragment, which is obtained on treatment of rabbit IgG with papain (Porter 1959). These studies were designed to determine how much of the amino acid sequence of heavy chain could be accounted for by a unique, regular amino acid sequence which was common to most, if not all, IgG antibodies. In addition, attempts were made to locate regions of heavy chains which varied in amino acid sequence. Although structural variants appear to occur among the heavy chains found in non-specific IgG, it would be desirable to know what portion of the heavy chain sequence is invariant among all antibodies. If antibody specificity results from sequence heterogeneity in light and heavy chains, then knowledge of the variant and invariant portions of these chains may provide insight into the nature of specific binding sites in anti-­bodies.

Publisher

The Royal Society

Subject

General Medicine

Cited by 64 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. The crystal structure of rabbit IgG-Fc;Biochemical Journal;2008-12-12

2. Antibody Binding Sites;Antigen Binding Molecules: Antibodies and T-cell Receptors;1996

3. Immunoglobulin evolution, 30 years on;Glycobiology;1996

4. The C1q receptor site on human immunoglobulin G;Canadian Journal of Biochemistry and Cell Biology;1984-06-01

5. Nucleotide sequence of a rabbit IgG heavy chain from the recombinant F-I haplotype;Immunogenetics;1983-10

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3