Mutagenesis in Escherichia coli : evidence for the mechanism of base change mutation by ultraviolet radiation in a strain deficient in excision-repair

Author:

Abstract

The mutagenic action of u. v. radiation has been studied upon Escherichia coli WP2 try her growing exponentially at 37 °C. Although this strain is unable to excise pyrimidine dimers from its DNA it showed no detectable reduction in growth rate after exposure to a dose of u. v. (10 -6 J mm -2 ) calculated to produce several dozen pyrimidine dimers per chromosome. As judged by photoreversibility of mutations to prototrophy, dimers at mutable sites may persist for up to about 4 generation times after u. v. and may give rise to mutations with a low probability in each replication cycle during this period. The slow disappearance of dimers takes place whether or not DNA replication is inhibited and indirect evidence suggests that excision-repair may not be involved. Mutations are established (i. e. become non-photoreversible) only when DNA replication is taking place and are not expressible on unsupplemented medium until approximately one generation time after being established. It is suggested that the mutation is initially produced by the laying down of an incorrect base opposite a pyrimidine dimer at, or shortly after, replication; the mutation becomes transcribable only after a further replication gives rise to a duplex mutant in both strands. The observed segregation pattern strongly suggests that at this further replication the mutation is carried by both resulting daughter duplexes. This implies that the mutant strand initially produced opposite the dimer has a strong influence on the bases of both new strands laid down at the next replication.

Publisher

The Royal Society

Subject

General Medicine

Cited by 39 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3