The role of isocitrate lyase in the metabolism of algae

Author:

Abstract

The incorporation of isotope from [2- 14 C]ethanol by cultures of the Brannon no. 1 strain of Chlorella vulgaris , growing on ethanol aerobically in the dark, was consistent with the operation of the tricarboxylic acid and glyoxylate cycles. Results obtained with [l- 14 C]acetate, added to similar cultures growing on glucose in the dark or on carbon dioxide in the light, indicated that the glyoxylate cycle did not function under these conditions. However, one of the key enzymes of this cycle, isocitrate lyase, was present in large amounts in extracts of this organism under all conditions of growth; in contrast, isocitrate lyase was inducibly formed by Chlamydomonas reinhardii prior to growth on acetate. No obvious dysfunction of the tricarboxylic acid cycle, which might necessitate the activity of isocitrate lyase during growth on other than C 2 -compounds, was detected in the Brannon no. 1 strain, nor were differences observed between the properties of the enzyme purified from cells grown on acetate and on glucose. But, whereas isocitrate lyase was wholly found in a soluble fraction of the organism after growth on glucose or on carbon dioxide, acetate-grown cells contained a major portion of their isocitrate lyase in a dense, particulate fraction. The Brannon no. 1 strain of Chlorella excreted labelled glycollate during growth in the dark on glucose in the presence of sodium [ 14 C]bicarbonate, but ceased to do so after transfer to acetate growth medium. The Pearsall’s strain of Chlorella , which does not form isocitrate lyase during growth on glucose, did not excrete labelled glycollate under these conditions. These results suggest that the Brannon no. 1 strain of Chlorella contained an active isocitrate lyase under all conditions of growth, but that this enzyme participates in the glyoxylate cycle only when it is incorporated into a particulate structure.

Publisher

The Royal Society

Subject

General Medicine

Reference7 articles.

1. Biochem;Andrews P .;J .,1964

2. A shw orth J . M. 1965 Ph.D . Thesis: U niversity of Leicester.

3. A shw orth J . M. & K ornberg H . L. 1963

4. Avison A. W . D. 1955 J . Chem. Soc.p. 732.

5. J . biol;Greiner C. M.;Chem.,1953

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3