A generalized approach to the description of interaction boundaries in migrating systems

Author:

Abstract

Patterns observed in the migration of a system of n solutes, where n ⋟ 1, are affected by the operation of either physical or chemical interactions or both. The effects of the two types of interactions have previously been considered separately by widely different approaches, leading in certain instances to the complete description of migration patterns. In the present work a unified and simplified approach is presented, which permits a complete mathematical description of all features of the migration pattern, provided the dependence of constituent velocities on total composition is defined for each constituent species. Emphasis is given to systems involving one or two migrating solutes. In particular, criteria have been established for sharp, spread and hypersharp boundary forms. The treatment, in common with some previous approaches, neglects the effects of diffusional spreading, and considers only time-independent interactions. The general theory is first illustrated with chemically associating systems, and the examples include descriptions of cases involving two solutes, which have been previously explained by physical argument alone. The operation of physical interactions is also treated by the theory, both by selecting appropriate models and by introducing general functions. Finally, the moving boundary equation is applied to selected migration patterns, modified by both physical and chemical interactions.

Publisher

The Royal Society

Subject

General Medicine

Reference16 articles.

1. Sedimentation in Chemically Reacting Systems. II. Numerical Calculations for Dimerization

2. Biochim;Davies M.;Acta,1963

3. The Theory of Chromatography

4. Disc;Faraday Soc.,1955

5. Proc. Roy;Gilbert G. A.;Soc. A,1959

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3