The measurement of synaptic delay, and the time course of acetylcholine release at the neuromuscular junction

Author:

Abstract

Focal recording from active spots of a neuromuscular junction was used to measure the ‘synaptic delay’ between terminal axon spike and end-plate current (e.p.c.). Synaptic delay is defined as the time interval between peak of inward current through the presynaptic membrane and commencement of inward current through the postsynaptic membrane. By substituting magnesium for calcium in the medium, and by adjustable electrophoretic application of calcium from the recording electrode, the e.p.c. can be restricted to the small portion of a single junction which is in contact with the microelectrode, and the statistical average amplitude of the e.p.c. can be reduced to less than quantal unit size. Under these conditions, the latency of the unit components of the e.p.c. can be determined and its statistical fluctuations studied. The synaptic delay at a single end-plate spot has a minimum value, at 20 °C, of 0.4 to 0.5 ms and a modal value of about 0.75 ms. There is considerable fluctuation of the measured intervals during a series of nerve impulses; over 50 % occur within a range of 0.5 ms, the rest being spread out in declining fashion over a further 1 to 4 ms. These latency fluctuations are shown to be a statistical consequence of the quantal process of transmitter release. The contribution of various factors to the minimum synaptic delay are discussed. Terminal conduction time has been effectively eliminated by the method of focal recording. Diffusion of acetylcholine towards the receptors, and its reaction with them must cause delays whose exact values are uncertain, but whose extreme upper limits can be shown to make up only a small part of the observed minimum delay. It is concluded that the synaptic interval arises chiefly from a delay in the release of transmitter after the arrival of the nerve impulse.

Publisher

The Royal Society

Subject

General Medicine

Reference12 articles.

1. C arslaw H . S. & J a e g e r J . C. 1947 Conduction of heat in solids. O x fo rd : C laren d o n P ress. p p . 386.

2. Q u a n ta l c o m p o n e n ts o f th e e n d -p la te p o te n tia l. J;Physiol.,1954

3. O n th e lo c aliza tio n o f ac ety Ich o lin e rec ep to rs;Physiol.,1955

4. B io p h y sica l asp ec ts o f n e u ro m u sc u la r tran sm issio n;Proqr. Biophys.,1956

5. T h e rela tio n sh ip b etw een th e m o d e o f o p era tio n a n d th e d im en sio n s o f th e ju n c tio n a l regions a t sy n ap ses a n d m o to r en d -o rg an s;Ja;Proc. Roy. Soc. B,1958

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3