Structure, morphology, composition and organization of biogenic minerals in limpet teeth

Author:

Abstract

The structure, morphology, composition, and organization of inorganic solids in the radula teeth of the limpet Patella vulgata have been studied by electron microscopy, electron diffraction, and e. d. X. a. of fractured, acid-treated, and sectioned tissue. Minerals first appear in the tooth base and comprise: amorphous and poorly crystalline granular, particulate, and sheet-like phases of variable composition (Fe, Si, P, Ca); irregular laths of crystalline goethite; and single crystals of prismatic goethite. The presence of localized Si and P may inhibit goethite crystallization in many regions of the tooth base. Mineralization of the tooth cusp begins with goethite impregnation of the posterior region. Crystals are deposited in the form of thin fibrous strands (15–20 nm width) with the [001] crystallographic axis initially parallel to the posterior tooth wall. Miner­alization proceeds by an increase in the number and thickness of the crystals within the posterior region. In contrast, the anterior zone is only partly impregnated with crystals aligned parallel to the long axis of the cusp. The mature crystals are well ordered, acicular in morphology but with extensive growth distortions, and organized along regularly interspaced (30–50 nm) electron-dense filaments within the cusp. Removal of iron reveals the presence of silica-impregnated fibres, folded sheets, and tubular structures (often 30–60 nm in diameter) within essentially intact teeth. We propose that goethite crystallization and organization is regulated, in part, by spatial constraints established by an ordered filamentous organic matrix and that silica impregnates the matrix components at a later stage in mineralization thus maintaining the structural integrity of the organic tissue.

Publisher

The Royal Society

Subject

General Medicine

Reference22 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3