The reaction-limited kinetics of membrane-to-surface adhesion and detachment

Author:

Abstract

Biological adhesion is frequently mediated by specific membrane proteins (adhesion molecules). Starting with the notion of adhesion molecules, we present a simple model of the physics of membrane-to-surface attach­ment and detachment. This model consists of coupling the equations for deformation of an elastic membrane with equations for the chemical kinetics of the adhesion molecules. We propose a set of constitutive laws relating bond stress to bond strain and also relating the chemical rate constants of the adhesion molecules to bond strain. We derive an exact formula for the critical tension. We also describe a fast and accurate finite difference algorithm for generating numerical solutions of our model. Using this algorithm, we are able to compute the transient behaviour during the initial phases of adhesion and detachment as well as the steady-state geometry of adhesion and the velocity of the contact. An unexpected consequence of our model is the predicted occurrence of states in which adhesion cannot be reversed by application of tension. Such states occur only if the adhesion molecules have certain constitutive properties (catch-bonds). We discuss the rational for such catch-bonds and their possible biological significance. Finally, by analysis of numeri­cal solutions, we derive an accurate and general expression for the steady-state velocity of attachment and detachment. As applications of the theory, we discuss data on the rolling velocity of granulocytes in post-capillary venules and data on lectin-mediated adhesion of red cells.

Publisher

The Royal Society

Subject

General Medicine

Reference24 articles.

1. Adamson A. W. 1976 Physical chemistry of surfaces. New York: John Wiley & Sons.

2. Quantitative investigations of the adhesiveness of circulating polymorphonuclear leucocytes to blood vessel walls

3. Relationship between the velocity of rolling granulocytes and that of the blood flow in venules

4. Cell adhesion. Competition between nonspecific repulsion and specific bonding

5. Bongrand P. & Bell G. T. 1984 Cell-cell adhesion: parameters and possible mechanisms. In Cellsurface dynamics- concepts and models (ed. A. S. Perelson C. DeLisi and F. W. Wiegel)

Cited by 699 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3