Real-time performance of a movement-sensitive neuron in the blowfly visual system: coding and information transfer in short spike sequences

Author:

Abstract

We develop model-independent methods for characterizing the information carried by particular features of a neural spike train as it encodes continuously varying stimuli. These methods consist, in essence, of an inverse statistical approach; instead of asking for the statistics of neural responses to a given stimulus we describe the probability distribution of stimuli that give rise to a certain short pattern of spikes. These ‘response-conditional ensembles’ contain all the information about the stimulus that a hypothetical observer of the spike train may obtain. The structure of these distributions thus provides a quantitative picture of the neural code, and certain integrals of these distributions determine the absolute information in bits carried by a given spike sequence. These methods are applied to a movement-sensitive neuron (H1) in the visual system of the blowfly Calliphora erythrocephala . The stimulus is chosen as the time-varying angular velocity of a (spatially) random pattern, and we consider segments of the spike train of up to three spikes with specified spike-intervals. We demonstrate that, with extensive analysis, a single experiment of roughly one hour’s duration is sufficient to provide reliable estimates of the relevant probability distributions. From the experimentally determined probability distributions we are able to draw several conclusions. (1) Under the conditions of our experiment, observation of a single spike carries roughly 0.36 bits of information, but spike pairs carry an interval-dependent signal that can be much larger than 0.72 bits; estimates of the total information capacity are in rough agreement with the maximum possible capacity given the signal-to-noise characteristics of the photoreceptors. (2) On average a single spike signals the occurrence of a velocity waveform that is positive (movement in the excitatory direction) at all times before the spike, whereas spike pairs can signal both positive and negative velocities, depending on the inter-spike interval. (3) Although inter-spike intervals are crucial in extracting all the coded information, the code is robust to several millisecond errors in the estimate of spike arrival times. (4) Short spike sequences give reliable information about specific features of the stimulus waveform, and this specificity can be quantified. (5) Our results suggest approximate strategies for reading the neural code – reconstructing the stimulus from observations of the spike train – and some preliminary reconstructions are presented. Some tentative attempts are made to relate our results to the more general questions of coding and computation in the nervous system.

Publisher

The Royal Society

Subject

General Medicine

Reference49 articles.

1. Abramowitz M. & Stegun I. 1965 Handbook of mathematical functions. New York: Dover.

2. The absolute efficiency of perceptual decisions

3. The Ferrier lecture, 1980

4. Three factors limiting the reliable detection of light by retinal ganglion cells of the cat

5. Bendat J. S. & Piersol A. G. 1971 Random data: analysis and measurement procedures. New Y ork: Wiley.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3