The evolution of visual processing and the construction of seeing systems

Author:

Abstract

This paper is concerned with the evolution of visual mechanisms and the possibility of copying their principles at different levels of sophistication. It is an old question how the complex interaction between eye and brain evolved when each needs the other as a test-bed for successive improvements. I propose that the primitive mechanism for the separation of stationary objects relies on their relative movement against a background, normally caused by the animal’s own movement. Apparently insects and many lower animals use little more than this for negotiating through a three-dimensional world, making adequate responses to indi­vidual objects which they ‘see’ without a cortical system or even without a large brain. In the development of higher animals such as birds or man, additional circuits store memories of the forms of objects that have been frequently inspected from all angles or handled. Simple visual systems, however, are tuned to a feature of the world by which objects separate themselves by movement relative to the eye. In making simple artificial visual systems which ‘see’, as distinct from merely projecting the image, it is more hopeful to copy the ‘ambient’ vision of lower animals than the cortical systems of birds or mammals.

Publisher

The Royal Society

Subject

General Medicine

Reference45 articles.

1. Berkeley G. 1709 Essay toward a new theory of vision. In works of George Berkeley. Bishop of Cloyne (ed. A. A. Luce & T. E. Jessop) vol. 1. pp. 143-239. Toronto: Nelson.

2. Buchner. E. 1984 Behavioural analysis of spatial vision in insects. In Photoreception and vision in invertebrates (ed. M. A. Ali). pp. 561-621. London and New York: Plenum Press.

3. Seeing objects in motion

4. Some operating rules for the optomotor system of a hoverfly during voluntary flight. J. comp;Collett T. S.;Physiol.,1980

5. Collett . T. S. & King A. J. 1975 Vision during flight. In The compound eye and vision (ed. G. A. Horridge) pp. 437-468. Oxford University Press.

Cited by 88 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3