Transneuronal degeneration of beta retinal ganglion cells in the cat

Author:

Abstract

Transneuronal retrograde degeneration of retinal ganglion cells was investigated following neonatal visual cortex ablation in the cat. After a survival time of at least 18 months, retinal ganglion cells projecting to the thalamus were labelled by retrograde transport of horseradish peroxidase. Filled ganglion cells were classified into α , β and γ types on the basis of dendritic morphology. In normal cats, α cells made up 8-10% of the total population in the sample area, β cells made up 64-67% and γ cells made up 23-27%. In retinae of visual cortex-ablated cats, normal numbers of α and γ cells were present, but the β cell population was depleted by 90% of normal. Thalamic projections of surviving retinal ganglion cells were investigated by anterograde transport of tritiated proline injected into the eye. In these animals, ablation of visual cortex resulted in almost complete degeneration of laminae A and A1 of the dorsal lateral geniculate nucleus. In the radioautographic material, projections from the retina to the degenerated parts of laminae A and A1 were barely detectable. Survival of some ganglion cell populations and death of others after neonatal visual cortex ablation may be explained in terms of the pattern of projections of the different cell types. We conclude that the majority of β cells degenerate following visual cortex ablation because of removal of cells in the dorsal lateral geniculate nucleus which form their sole or principal target. Alpha and γ cells and 10% of β -cells survive because of extensive collateral projections to targets other than cells of the laminae A and A1 of dorsal lateral geniculate nucleus.

Publisher

The Royal Society

Subject

General Medicine

Reference55 articles.

1. The Retina of the Newborn Human Infant

2. Retrograde transsynaptic cellular degeneration in mammillary and ventral tegmental nuclei following limbic decortication in rabbits of various ages

3. Cytoarchitectonic appearance of the isolated hypothalamus of the cat. J. comp;Bleier R.;Neurol.,1966

4. The morphological types of ganglion cells of the domestic cat's retina. J. Physiol;Boycott B. B.;Lond.,1974

5. Physiological identification of a morphological class of cat retinal ganglion cells.

Cited by 58 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3