On the mechanism of a high-frequency force generator in outer hair cells isolated from the guinea pig cochlea

Author:

Abstract

Isolated mammalian outer hair cells elongate or shorten respectively by several micrometres when electrically hyperpolarized or depolarized. The experiments in this paper were designed to locate the force-generating mechanism that drives length changes in outer hair cells, and to determine some of its basic properties. The whole-cell mode of the patch-clamp technique was used to stimulate cells electrically and to perfuse them with specific drugs. The pattern of displacement of cellular organelles, and the relative displacements of the cell base and apex during electrical stimulation with the cell mechanically anchored at various points along its length, suggest that the force-generating mechanism is distributed throughout the length of the cell. Further experiments altering the shape, volume and intracellular pressure of outer hair cells suggest that the mechanism is closely associated with the plasma membrane. These experiments also demonstrate that the characteristic tubular shape of outer hair cells is maintained by membrane-associated structures with elastic properties that enable the cell to return to its original shape after deformation. The mechanism controlling length changes may, therefore, be composed of two elements in parallel, namely a force generating element and a passive elastic element. Inhibitors of ATP synthesis, or the presence of the non-hydrolysable ATP analogue AMP. PNP, perfused into outer hair cells, failed to inhibit length changes. Drugs against actin, including phalloidin, cytochalasin B and cytochalasin D, and against tubulin, including colchicine, nocodazole and colcemid, also failed to inhibit length changes. We conclude that the force-generating mechanism is, therefore, unlike most other forms of cell motility, and possible alternative hypotheses are briefly discussed.

Publisher

The Royal Society

Subject

General Medicine

Reference44 articles.

1. The spasmoneme and calcium-dependent contraction in connection with specific calcium binding proteins;Amos W. B.;Biol.,1976

2. Ashmore J. F. 1986 The cellular physiology of isolated outer hair cells: implications for cochlear frequency selectivity. In Auditory frequency selectivity (ed. B. C. J. Moore & R. J. Patterson) pp. 103-108. New York: Plenum.

3. A fast motile response in guinea pig outer hair cells: The cellular basis of the cochlear amplifier. J . Physiol;Ashmore J. F.;Lond.,1987

4. 6 A two-chip video-contrast enhancer;Ashmore J. F.;J. Physiol. Lond.,1987

5. Ashmore J. F. & Holley M. C. 1988 Temperature-dependence of a fast motile response in isolated outer hair cells of the guinea pig cochlea. Q. J l exp. Physiol. 78. (In the press.)

Cited by 106 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3