A theory of insect vision: velocity parallax

Author:

Abstract

Many insects show by their behaviour that they detect visually the existence of separate objects. The experimental material to analyse how they perceive objects is provided by an insect that walks to the end of a stick; then, because it has no alternative, it reaches with a foreleg towards a neighbouring object that it perceives to be within range. Some insects make horizontal peering movements as an aid to vision. The peering motion is exactly appropriate for generating an apparent velocity of nearby objects relative to the background. These experiments, when put together with the known properties of optic lobe neurons, suggest that a mechanism based on velocity parallax projected to the horizontal plane accounts for much insect visual behavour. Velocity parallax is defined as the discrepancy seen at the edge of an object against a distant background when the eye moves laterally. On this theory, perception of an object is inseparable from the local detection of velocity differences. The background may not be ‘perceived' at all when an object occurs in the foreground. The postulated mechanism is a two- or three-stage feedback, in which the perceived velocity (or, more accurately, the spatially correlated contrast frequency) in small-field motion-perception units is reduced by the averaged contrast frequency in larger fields, which feed back upon them. Contrast frequency is defined as the frequency of the flicker that is generated by a pattern moving across the eye. An alternative mechanism to the feedback of the velocity signal with lateral spread is adaptation to the local average background velocity, while sensitivity to a smaller local change in velocity is retained. That idea comes from recent work on the H1 neuron in the fly optic lobe, and could be the basis of a primitive form vision that, if present in mediumfield neurons, is adequate for the whole of the normal visual behaviour of a freely moving insect. These speculations invite a variety of experimental tests, ranging from visual discrimination tests with bees that are shown the velocity parallax situation, to appropriate stimulation of optic lobe neurons, to simulation of a visual processing system that relies on velocity parallax cues to detect objects.

Publisher

The Royal Society

Subject

General Medicine

Reference31 articles.

1. Distance and size discrimination in a water stick insect, Ranatra linearis (Heteroptera). J.exp;Cloarac A.;Biol.,1986

2. Visual Neurones for Tracking Moving Targets

3. Visual neurones in the anterior optic tract of the hawk moth. J. comp;Collett T. S.;Physiol.,1972

4. Collett T. S. & King A. J. 1975 Vision during flight. In The compound eye and vision of insects (ed. G. A. Horridge) pp. 437-466. Oxford University Press.

5. Peering - a locust behaviour pattern for obtaining motion parallax information. J. exp;Collett J. S.;Biol.,1978

Cited by 59 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3