Crystal growth and the role of the organic network in eggshell biomineralization

Author:

Abstract

A model based on geometrical crystal growth considerations is proposed for the deposition of the crocodilian, testudinian and avian eggshells. Ir each shell column, crystal deposition is initiated at a single location, from which growth fans out at all angles to the shell normal. In both co1citic and aragonitic shells, growth is in the [001] direction, resulting in an increase in the degree of (001) preferred orientation with distance from nucleation. Where there is unhindered crystal growth, the shells show a crystalline fracture morphology, and the degree of texture that develops is a simple function of the column radius. This type of growth makes up the whole of the testudinian shell, the inner 0.3-0.4 (30-40 %) of the thick ratite shells and the cone layer of the other avian shells. At the start of the palisade layer of the avian shell, the onset of deposition of the organic component coincides with a hindrance to texture development, which thereafter proceeds at a lower rate. A further hindrance occurs about halfway through the shell, probably caused by a change in the physical characteristics of the organic network. The degree of texture that develops in the avian shell is a function of the column radius and the degree of physical hindrance presented by the organic network. The palisade layer of the avian shell has a composite fracture morphology resulting from the intermingling of the network with the inorganic phase.The organic component does not appear to control crystal growth, as previously believed, but instead acts as a reinforcing fibrous network.

Publisher

The Royal Society

Subject

General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3