Responses of synchronous L5178Y S/S cells to heavy ions and their significance for radiobiological theory

Author:

Abstract

Synchronous suspensions of the radiosensitive S/S variant of the L5178Y murine leukaemic lymphoblast at different positions in the cell cycle were exposed aerobically to segments of heavy-ion beams ( 20 Ne, 28 Si, 40 Ar, 56 Fe and 93 Nb) in the Bragg plateau regions of energy deposition. The incident energies of the ion beams were in the range of 460 ± 95 MeV u -1 , and the calculated values of linear energy transfer (LET ) for the primary nuclei in the irradiated samples were 33 ± 3, 60 ± 3, 95 ± 5, 213 ± 21 and 478 ± 36 keV μm -1 , respectively; 280 kVp X-rays were used as the baseline radiation. Generally, the maxima or inflections in relations between relative biological effectiveness (RBE) and LET were dependent upon the cycle position at which the cells were irradiated. Certain of those relations were influenced by post-irradiation hypothermia. Irradiation in the cell cycle at mid -G 1 to mid-G 1 +3 h, henceforth called G 1 to G 1 + 3 h, resulted in survival curves that were close approximations to simple exponential functions. As the LET was increased, the RBE did not exceed 1.0, and by 478 keV μm -1 it had fallen to 0.39. Although similar behaviour has been reported for inactivation of proteins and certain viruses by ionizing radiations, so far the response of the S/S variant is unique for mammalian cells. The slope of the survival curve for X-photons ( D 0 :0.27 Gy) is reduced in G 1 to G 1 + 3 h by post-irradiation incubation at hypothermic temperatures and reaches a minimum ( D 0 : 0.51 Gy) at 25 °C. As the LET was increased, however, the extent of hypothermic recovery was reduced progressively and essentially was eliminated at 478 keV μm -1 . At the cycle position where the peak of radioresistance to X-photons occurs for S/S cells, G 1 + Sh, increases in LET elicited only small increases in RBE (at 10% survival), until a maximum was reached around 200 keV μm -1 . At 478 keV μm -1 , what little remained of the variation in response through the cell cycle could be attributed to secondary radiations (δ rays) and smaller nuclei produced by fragmentation of the primary ions. Definitions 1. Linear energy transfer (LET ) is the energy deposited per unit length of track by an ionizing particle and usually is measured in kiloelectron volts per micrometer (in water). 2. Penumbra . Atomic interactions along the track of a heavy ion result in the ejection of electrons with energies sufficient to move beyond the region of dense ionization which constitutes the track core, and so may be considered to form a penumbra of sparsely ionizing radiations around the track core. 3. RBE . The effectiveness of a densely ionizing radiation (heavy ion) compared to a sparsely ionizing radiation, e. g. X- or γ -photons, is measured by the inverse ratio of the doses of each radiation needed to produce a given radiobiological effect, and is known as the relative biological effectiveness (RBE): the usual reference radiation is 250 kVp X-rays. 4. D 0 is a measure of the radiosensitivity of a cell as determined from the (limiting) linear slope of the survival curve, and is the dose in Gray (1 Gy ≡ 1 Joule kg -1 ) required to reduce the survival at a point anywhere in that region of the survival curve to 37% of its value at that point.

Publisher

The Royal Society

Reference46 articles.

1. Qualitative differences between the action of a and X rays on Iymphoma cells invitro;Alexander P.;Br. J. Radiol.,1962

2. Alexander P. & Lett J. T. i 960 Role of oxygen in the crosslinking and degradation of deoxyribonucleic acid by ionizing radiations. Nature Lord. 187 933-934.

3. The role of post-irradiation repair processes in chemical protection and sensitization;Alexander P.;Prog. Biochem. Pharmacol.,1965

4. Degradation of Dry Deoxyribonucleic Acid by Polonium Alpha-Particles

5. Barendsen G. W. 1968 Responses of cultured cells tumours and normal tissues to radiations of different linear energy transfer. In Current topics in radiation research vol. 4 (ed. M. Ebert & A. Howard) pp. 293-356. Amsterdam: North-Holland.

Cited by 13 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3