Ocular vergence under natural conditions. I. Continuous changes of target distance along the median plane

Author:

Abstract

Horizontal binocular eye movements of four subjects were recorded with the scleral sensor coil - revolving magnetic field technique while they fixated a natural target, whose distance was varied in a normally illuminated room. The distance of the target relative to the head of the subject was changed in three ways: ( a ) the target was moved manually by the experimenter; ( b ) the target was moved manually by the subject; ( c ) the target remained stationary while the subject moved his upper torso towards and away from the target. The rate of change of target distance was varied systematically in four levels, ranging from ‘slow’ to ‘very fast’, corresponding to changes in target vergence from about 10° s -1 to about 100° s -1 . The dynamics of ocular vergence with regard to delay and speed were, under all three conditions, considerably better than could be expected from the literature on ocular vergence induced by disparity and/or blur. When ‘very fast’ changes in the distance of the target were made, subjects achieved maximum vergence speeds of up to about 100° s -1 . Delays of these fast vergence responses were generally smaller than 125 ms. Negative delays, i. e. ocular vergence leading the change in target distance, were observed. The eyes led the target (i. e. predicted target motion) by about 90 ms on average, when the subject used his hand to move the target. Vergence tracking was almost perfect when changes in distance were produced by moving the upper torso. In this condition, the eye led the target by about 5 ms. In the ‘slow’ and ‘medium’ conditions (stimulus speeds about 10-40° s -1 ) tracking was accurate to within 1-2°, irrespective of the way in which the target was moved. In the ‘fast’ and ‘very fast’ conditions (stimulus speeds about 40-100° s -1 ), the accuracy of vergence tracking was better for self-induced than for experimenter-induced target displacements, and accuracy was best during voluntary movements of the upper torso. In the last case, ocular vergence speed was within about 10% of the rate of change of the vergence angle formed by the eyes and the stationary target. The dynamics of convergent and divergent vergence responses varied considerably. These variations were idiosyncratic. They were consistent within, but not between, subjects. Ocular vergence associated with attempted fixation of an imagined target, changing distance in darkness, could only be made by two of the four subjects. The changes they could make were unreliable and poorly correlated with changes in the distance of the imagined target. Vergence changes did not occur when the distance to the target, imagined in darkness, was varied by keeping the target stationary and moving the torso back and forth. In conclusion, when ocular vergence was studied under relatively natural conditions in which there were many cues to the distance of the target, oculomotor vergence was both much faster and much more accurate than could have been anticipated from previous studies done under more restricted stimulating conditions.

Publisher

The Royal Society

Reference34 articles.

1. A quantitative analysis of the horizontal movements of the eyes in the experiments of Johannes Muller. II. Effect of variation in target separation. J;Alpern M.;Ophthal.,1956

2. Eye- and head movements in freely moving rabbits.

3. Collewijn H. & Erkelens C. J. 1989 Binocular eye movements and the perception of depth. In Reviews of oculomotor research vol. 4 (Eye movements and their role in visual and cognitive processes) (ed. E. Kowler). Amsterdam: Elsevier. (In the press.)

4. NATURAL RETINAL IMAGE MOTION: ORIGIN AND CHANGE

5. Compensatory eye movements during active and passive head movements: fast adaptation to changes in visual magnification.

Cited by 81 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3